# Approximation of an Entire Function 

O. P. Juneja<br>Department of Mathematics, Indian Institute of Technology, Kanpur 208016, India

Communicated by Oved Shisha

## 1. Introduction

Let $f(x)$ be a real-valued continuous function defined on $[-1,1]$, and let

$$
\begin{equation*}
E_{n}(f) \equiv \inf _{\nu \in \pi_{n}}\|f-p\|_{2 \infty}\{-1,11, \quad n=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

be the minimum error in the Chebyshev approximation of $f(x)$ over the set $\pi_{n}$ of real polynomials of degree at most $n$. Bernstein ([1], p. 118) proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{n}^{1 / n}(f)=0 \tag{2}
\end{equation*}
$$

if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function.
Let $f(z)$ be an entire function, and let

$$
M(r) \equiv M_{f}(r)=\max _{|z|=r}|f(z)|
$$

then the order $\rho$ and lower order $\lambda$ of $f(z)$ are defined by ([2], p. 8)

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log M(r)}{\log r}=\frac{\rho}{\lambda} \quad(0 \leqslant \lambda \leqslant \rho \leqslant \infty) . \tag{3}
\end{equation*}
$$

Now, for $f(z)$ entire, (2) does not give any clue as to the rate at which $E_{n}^{1 / n}(f)$ tends to zero. Recently, Varga ([9], Theorem 1) has shown that this rate depends on the order of $f(z)$. In fact, he has proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{n \log n}{\log \left[1 / E_{n}(f)\right]}=\rho \tag{4}
\end{equation*}
$$

where $\rho$ is a nonnegative real number if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function of order $\rho$.

However, if $f(z)$ is an entire function of infinite order, then (4) fails to give satisfactory information about the rate of decrease of $E_{n}^{1 / \pi}(f)$. Reddy ([7], Theorem 1), making use of the concept of "index" of an entire function earlier introduced by Sato ([8], p. 412) extended the above result to functions of infinite order. Thus, if

$$
\begin{equation*}
\rho(q)=\lim _{r \rightarrow \infty} \sup \frac{\log ^{[q]} M(r)}{\log r}, \quad q \geqslant 2 \tag{5}
\end{equation*}
$$

where $\log ^{[0]} M(r)=M(r)$ and $\log ^{[q]} M(r)=\log \left(\log { }^{[q-1]} M(r)\right)$, then $f(z)$ is said to be of index $q$ if $\rho(q-1)=\infty$ while $\rho(q)<\infty$. If $f(z)$ is of index $q$ we shall call $\rho(q)$ the $q$-order of $f(z)$. Analogous to lower order, the concept of lower $q$-order can be introduced. Thus $f(z)$, an entire function of index $q$, is said to be of lower $q$-order $\lambda(q)$ if

$$
\begin{equation*}
\lambda(q)=\liminf _{r \rightarrow \infty} \frac{\log ^{[q]} M(r)}{\log r}, \quad q \geqslant 2 \tag{6}
\end{equation*}
$$

Reddy ([7], Theorem 1) has extended (4) to functions of infinite order by showing that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{n \log ^{[a-1]} n}{\log \left[1 / E_{n}(f)\right]}=\sigma \tag{7}
\end{equation*}
$$

satisfies $0<\sigma<\infty$ if, and only if, $f(x)$ is the restriction to [ $-1,1$ ] of an entire function of index $q$, with $\rho(q)=\sigma$.

However, the result corresponding to (7) does not always hold for the lower $q$-order. In fact, Reddy ([7], Theorems 2A and 2B) has further shown that if $f(x)$ is the restriction to $[-1,1]$ of an entire function of index $q$, then its lower $q$-order $\lambda(q)$ satisfies

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{n \log ^{[q-1]} n}{\log \left[1 / E_{n}(f)\right]} \leqslant \lambda(q) \tag{8}
\end{equation*}
$$

and that the reverse inequality (and hence equality) holds in (8) if $E_{n-1}(f) / E_{n}(f)$ is a nondecreasing function of $n$ for $n>n_{0}$.

In the present paper, we obtain a result corresponding to (7) for the lower $q$-order $\lambda(q)$ which holds without the condition (9). We also give one more relation which depicts the influence of $\lambda(q)$ on the rate of decrease of $E_{n}(f)$.

## 2. Main Result

We first prove
Theorem 1. Let $f(x)$ be a real-valued continuous function which is the restriction to $[-1,1]$ of an entire function $f(z)$ of index $q(\geqslant 2)$. Then, $f(z)$ is of lower $q$-order $\lambda(q)$ if, and only if,

$$
\begin{equation*}
\lambda(q)=\max _{\left\{a_{h}\right\}} \liminf _{h \rightarrow \infty} \frac{n_{h} \log ^{[q-1]} n_{h-1}}{\log \left[1 / E_{n_{h}}(f)\right]} \tag{10}
\end{equation*}
$$

where maximum is taken over all increasing sequences $\left\{n_{h}\right\}$ of natural numbers.
We require a few lemmas.

Lemma 1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of index $q(\geqslant 2)$ and lower $q$-order $\lambda(q)$ and let $\nu(r)$ denote the rank of the maximum term $\mu(r)$ for $|z|=r$, i.e., $\mu(r)=\max _{n>0}\left\{\left|a_{n}\right| r^{n}\right\}$ and $\nu(r)=\max \left\{n\left|\mu(r)=\left|a_{n}\right| r^{n}\right\}\right.$. Then

$$
\begin{equation*}
\lambda(q)=\liminf _{r \rightarrow \infty} \frac{\log ^{[q-1]} \nu(r)}{\log r}=\liminf _{r \rightarrow \infty} \frac{\log ^{[q]} \mu(r)}{\log r} \tag{11}
\end{equation*}
$$

The lemma follows easily on the same lines as those of Whittaker ([10], Theorem 1) for $q=2$, so we omit the proof,

Lemma 2. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of index $q(\geqslant 2)$ and lower $q$-order $\lambda(q)$ and let $\left\{n_{k}\right\}$ denote the range of the step function $\nu(r)$, then

$$
\begin{equation*}
\lambda(q)=\liminf _{k \rightarrow \infty} \frac{\log g^{[q-1]} n_{k}}{\log \rho\left(n_{k+1}\right)} \tag{12}
\end{equation*}
$$

where the $\rho\left(n_{k}\right)$ terms denote the jump points of $\nu(r)$.
Proof. It follows, from given data, that

$$
\nu(r)=n_{k} \quad \text { when } \quad \rho\left(n_{k}\right) \leqslant r<\rho\left(n_{k+1}\right)
$$

and that

$$
\rho\left(n_{k}\right)<\rho\left(n_{k}+1\right)=\cdots=\rho\left(n_{k+1}\right)
$$

Furthermore, if $n_{k}<n \leqslant n_{k+1}$, then $\rho(n)=\rho\left(n_{k+1}\right)$ and so (11) gives

$$
\begin{aligned}
\lambda(q) & =\liminf _{n \rightarrow \infty} \frac{\log { }^{[q-1]} n}{\log \rho(n)} \geqslant \liminf _{k \rightarrow \infty} \frac{\log ^{[q-1]}\left(n_{k}+1\right)}{\log \rho\left(n_{k+1}\right)} \\
& =\liminf _{k \rightarrow \infty} \frac{\log { }^{[q-1]}\left(n_{k}+1\right)}{\log \rho\left(n_{k}+1\right)} \geqslant \lambda(q)
\end{aligned}
$$

which gives (12).
Remark. For $q=2$, relation (12) is due to Gray and Shah ([3], Lemma 1).
Lemma 3. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{n_{k}}$ be an entire function of index $q(\geqslant 2)$ and lower $q$-order $\lambda(q)$ such that $\psi(k) \equiv\left|a_{k} / a_{k+1}\right|^{1 /\left(n_{k+1}-n_{k}\right)}$ forms an increasing function of $k$ for $k>k_{0}$; then

$$
\begin{equation*}
\lambda(q)=\liminf _{k \rightarrow \infty} \frac{\left(n_{k+1}-n_{k}\right) \log ^{[q-1]} n_{k}}{\log \left|a_{k} / a_{k+1}\right|} . \tag{13}
\end{equation*}
$$

Proof. For $q=2$, this result is due to Juneja and Kapoor [5]. We note that since $\psi(k)$ forms an increasing function of $k$ for $k>k_{0}$, we have

$$
\nu(r)=n_{k} \quad \text { for } \quad \psi(k-1) \leqslant r<\psi(k)
$$

so that, for sufficiently large $k, \rho\left(n_{k}\right)=\psi(k-1), \rho\left(n_{k+1}\right)=\psi(k)$. Substituting the value of $\rho\left(n_{k+1}\right)$ in (12) we get (13).

Lemma 4. Let $\left\{n_{k}\right\}$ be an increasing sequence of positive integers and let $\left\{a_{n}\right\}$ be a sequence of complex numbers such that $\left|a_{n_{k}}\right|<1$ for $k>k_{0}$; then for $q \geqslant 2$,

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{n_{k} \log ^{[q-1]} n_{k-1}}{\log \left|a_{n_{k}}\right|^{-1}} \geqslant \liminf _{k \rightarrow \infty} \frac{\left(n_{k}-n_{k-1}\right) \log ^{[q-1]} n_{k-1}}{\log \left|a_{n_{k-1}}\right| a_{n_{k}} \mid} \tag{14}
\end{equation*}
$$

The lemma follows exactly along the same lines as those of Juneja ([4], Lemma 2) for $q=2$, so we omit the proof.

Proof of Theorem 1. First, suppose that $f(x)$ has an analytic extension $f(z)$ which is an entire function of index $q$ and lower $q$-order $\lambda(q)$. Following Bernstein's original proof ([6], p. 76) it follows that for each $n \geqslant 0$

$$
\begin{equation*}
E_{n}(f) \leqslant \frac{2 B(r)}{r^{n}(r-1)} \quad \text { for any } \quad r>1 \tag{15}
\end{equation*}
$$

where $B(r)=\max _{z \in \mathscr{C}_{r}}|f(z)|$, and $\mathscr{C}_{r}$ with $r>1$ denotes the closed interior of the ellipse with foci $\pm 1$, with half-major axis $\left(r^{2}+1\right) / 2 r$ and half-minor axis $\left(r^{2}-1\right) / 2 r$. The closed disks $D_{1}(r)$ and $D_{2}(r)$ bound the ellipse $\mathscr{C}_{r}$ in the sense that

$$
D_{1}(r) \equiv\left\{z| | z \left\lvert\, \leqslant \frac{r^{2}-1}{2 r}\right.\right\} \subset \mathscr{C}_{r} \subset D_{2}(r) \equiv\left\{z| | z \left\lvert\, \leqslant \frac{r^{2}+1}{2 r}\right.\right\}
$$

From this inclusion, it follows that

$$
\begin{equation*}
M\left(\frac{r^{2}-1}{2 r}\right) \leqslant B(r) \leqslant M\left(\frac{r^{2}+1}{2 r}\right) \quad \text { for all } \quad r>1 \tag{16}
\end{equation*}
$$

Consequently, (15) and (16) give for any sequence $\left\{n_{h}\right\}$ of positive integers that

$$
\begin{equation*}
M\left(\frac{r^{2}+1}{2 r}\right) \geqslant E_{n_{h}}(f) r^{n_{h}} \quad \text { for any } r>3 \text { and } h=1,2, \ldots \tag{17}
\end{equation*}
$$

Now, let

$$
\liminf _{h \rightarrow \infty} \frac{n_{h} \log ^{[q-1]} n_{h-1}}{\log \left(1 / E_{n_{h}}(f)\right)}=\alpha\left(\left\{n_{h}\right\}\right) \equiv \alpha
$$

Since $f(z)$ is an entire function, (2) gives $0 \leqslant \alpha \leqslant \infty$. First, let $0<\alpha<\infty$; then for $\alpha>\epsilon>0$,

$$
E_{n_{h}}(f)>\left[\log ^{[q-2]} n_{h-1}\right]^{-n_{h} /(\alpha-\epsilon)} \quad \text { for } \quad h>h_{0}=h_{0}(\epsilon)
$$

Let $r_{h}=e\left(\log ^{[q-2]} n_{h-1}\right)^{1 /(\alpha-\epsilon)}$ for $h=1,2,3, \ldots$. If $r_{h} \leqslant r \leqslant r_{h+1}, h>h_{0}$, then (17) gives

$$
\begin{aligned}
\log M\left(\frac{r^{2}+1}{2 r}\right) & \geqslant \log E_{n_{h}}(f)+n_{h} \log r \\
& \geqslant \log E_{n_{h}}(f)+n_{h} \log r_{h} \\
& >n_{h} \\
& =\exp ^{[q-2]}\left(\frac{r_{h+1}}{e}\right)^{\alpha-\epsilon}
\end{aligned}
$$

So,

$$
\begin{aligned}
\log ^{[q]} M\left(\frac{r^{2}+1}{2 r}\right) & >(\alpha-\epsilon) \log r_{h+1}-(\alpha-\epsilon) \\
& \geqslant(\alpha-\epsilon) \log r-(\alpha-\epsilon)
\end{aligned}
$$

or

$$
\lambda(q) \equiv \liminf _{r \rightarrow \infty} \frac{\log ^{[q]} M(r)}{\log r} \geqslant \alpha
$$

which obviously holds when $\alpha=0$. Since this inequality holds for every increasing sequence $\left\{n_{h}\right\}$ of positive integers, we have

$$
\begin{equation*}
\lambda(q) \geqslant \max _{\left\{n_{n}\right\}} \alpha\left(\left\{n_{n}\right\}\right)=\beta, \quad \text { for instance. } \tag{18}
\end{equation*}
$$

Now, for each $n \geqslant 0$, there exists a unique $p_{n}(x) \in \pi_{n}$ such that

$$
\left\|f-p_{n}\right\|_{L^{\infty}[-1,1]}=E_{n}(f), \quad n=0,1,2, \ldots
$$

Further, since $\left\|p_{n+1}-p_{n}\right\|_{L \times[-1,1]}$ is bounded above by $2 E_{n}(f)$, we have by [6], p. 42:

$$
\begin{equation*}
\left|p_{n+1}(z)-p_{n}(z)\right| \leqslant 2 E_{n}(f) r^{n+1} \text { for all } z \in \mathscr{C}_{r} \text { for any } r>1 \tag{19}
\end{equation*}
$$

Thus, we can write

$$
f(z)=p_{0}(z)+\sum_{k=0}^{\infty}\left(p_{k+1}(z)-p_{k}(z)\right),
$$

and this series converges uniformly in any bounded domain of the complex plane. So, (19) gives

$$
|f(z)| \leqslant\left|p_{0}(z)\right|+2 \sum_{k=0}^{\infty} E_{k}(f) r^{k+1} \quad \text { for any } \quad z \in \mathscr{C}_{r}
$$

and consequently, from the definition of $B(r)$

$$
B(r) \leqslant A_{0}+1 \sum_{k=0}^{\infty} E_{k}(f) r^{k+1}
$$

So, (16) gives

$$
\begin{equation*}
M\left(\frac{r^{2}-1}{2 r}\right) \leqslant A_{0}+2 \sum_{k=0}^{\infty} E_{k}(f) r^{k+1} \tag{20}
\end{equation*}
$$

Obviously, the function $g(z)=\sum_{k=0}^{\infty} E_{k}(f) z^{k+1}$ is an entire function. Let $\left\{n_{k}\right\}$ denote the range of $\nu(r)$ for this function. Coosider the function $h(z)=\sum_{k=0}^{\infty} E_{n_{k}}(f) 2^{n_{2}}$. It is easily seen that $h(z)$ is aiso an entire function and that $g(z)$ and $h(z)$ have the same maximum term for every $z$. It follows, from Lemma 1 , that both have the same lower $q$-order. If we denote this by $\lambda_{0}(q)$, then since $h(z)$ satisfies the hypotheses of Lemma 3, we have

$$
\left.\begin{array}{rl}
\lambda_{0}(q) & =\liminf _{k \rightarrow \infty} \frac{\left(n_{k}-n_{k-1}\right) \log ^{[q-1]} n_{k-1}}{\log \left(E_{n_{k-1}}(f) / E_{n_{k}}(f)\right)} \\
& \leqslant \operatorname{iminif}_{k \rightarrow \infty} \frac{n_{k} \log }{[q-4 \mid} n_{k-1} \\
\log \left(J / E_{n_{k}}(f)\right) \tag{21}
\end{array} \quad \text { by Lenma } 4\right\}
$$

Thus (20) and (21) give

$$
\begin{aligned}
M\left\{\frac{r^{2}-!}{2 r}\right\} & \leqslant A_{\mathfrak{v}}+2 g(r) \\
& <0(1)+2 \exp ^{[q-1)}\left(r^{(\beta+\varepsilon}\right) \text { for a sequence } r_{1}, r_{2}, \ldots \rightarrow \infty
\end{aligned}
$$

Hence, it follows that

$$
\begin{equation*}
\lambda(q) \leqslant \beta \tag{22}
\end{equation*}
$$

which shows that the lower $q$-order of $f(z)$ does not exceed $\beta$. Thus, if $f(z)$ is of lower $q$-order $\lambda(q)$, then (18) shows that $\beta \leqslant \lambda(q)$. If $\beta<\lambda(q)$, then the above arguments show that $f(z)$ would be of lower $k$-order less than $\beta$, a contradiction. Thus, we must have $\beta=\lambda(q)$. This completes the proof of the theorem.

Using Lemmas 3 and 4 and arguing as above the following theorem can also be proved easily.

Theorem 2. Let $f(x)$ be a real-valued continuous function which is the restriction to $[-1,1]$ of an entire function $f(z)$ of index $q$. Then, $f(z)$ is of lower $q$-order $\lambda(q)$ if, and only if,

$$
\begin{equation*}
\lambda(q)=\max _{\left\{n_{h}\right\}} \liminf _{h \rightarrow \infty} \frac{\left(n_{h}-n_{h-1}\right) \log ^{[q-1]} n_{h-1}}{\log \left(E_{n_{h-1}}(f) / E_{n_{h}}(f)\right)} \tag{23}
\end{equation*}
$$

where maximum is taken over all increasing sequences $\left\{n_{h}\right\}$ of natural numbers.

## References

1. S. Bernstein, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable reille," Gauthier-Villars, Paris, 1926.
2. R. P. Boas, Jr., "Entire Functions," Academic Press, New York, 1954.
3. A. Gray and S. M. Shaf, Holomorphic functions with gap power series, Math. Z. 86 (1965), 375-394.
4. O. P. Juneja, On the coefficients of an entire series, J. Analyse Math. 24 (1971), 395-401.
5. O. P. Juneja and G. P. Kapoor, On the lower order of entire functions, J. London Math. Soc. (2) 5 (1972), 310-312.
6. G. G. Lorentz, "Approximation of Functions," Holt, Rinchart and Winston, New York, 1966.
7. A. R. Reddy, Approximation of an entire function, J. Approximation Theory 3 (1970), 128-137.
8. D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69 (1963), 411-414.
9. R. S. Varga, On an extension of a result of S. N. Bernstein, J. Approximation Theory 1 (1968), 176-179.
10. J. M. Whittarer, The lower order of integral functions, J. London Math. Soc. 8 (1933), 20-27.
