JOURNAL OF APPROXIMATION THEORY I1, 343-349 (1974}

Approximation of an Entire Function
0. P. Juneia

Department of Mathematics, Indian Institute of Technology, Kanpur 208016, India
Communicated by Qued Shisha

1. INTRODUCTION

Let f(x) be a real-valued continuons function defined on [~1, 1], and let
En(f) = ‘l};f }}f—})“;_ﬁ{_l_u s 1 = 0, 1, 2,.“, (])

be the minimum error in the Chebyshev approximation of f(x) over the set =,
of real polynomials of degree at most n. Bernstein ({11, p. 118) proved that

lim EX™fy =0 ()

if, and only if, f(x) is the restriction to [—1, 1] of an entire function.
Let f(z) be an entire function, and let

M() = M) = max | f));
then the order p and lower order A of f(z) are defined by ([2], p. 8)

. suploglog M(r) p _

mof —Togr  —2 @<A<p<o) ©)
Now, for f(z) entire, (2) does not give any clue as to the rate at which
EX"(f) tends to zero. Recently, Varga ({91, Theorem 1) has shown that this
rate depends on the order of f(z). In fact, he has proved that

. nlogn
lm,}joup Tam = p, 4)

where p is a nonnegative real number if, and only if, f(x) is the restriction to
[—1, 1] of an entire function of order p.

However, if f{2)1s an entire function of infinite order, then (4) fails to give
satisfactory information about the rate of decrease of EL"(f). Reddy
([7], Theorem 1), making use of the concept of “index” of an entire function
earlier introduced by Sato ([8], p. 412) extended the above result to functions
of infinite order. Thus, if

L logl4 M(r)
pg) = limsup —=7=2——, 422 )
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where logl® M(r) = M(r) and logl9l M(r) = log(logl*-1 M(r)), then f{(z) is
said to be of index g if p(g — 1) = oo while p(g) < 0. If f(z) is of index ¢
we shall call p(q) the g-order of f(z). Analogous to lower order, the concept of
lower g-order can be introduced. Thus f(z), an entire function of index g, is
said to be of lower g-order A(q) if
. logl M(r)
Mg) = hm mf Togr qg=2. ©)
Reddy ([7], Theorem 1) has extended (4) to functions of infinite order by
showing that

nlogleln
P log[l/E”n'(f)]

satisfies 0 << ¢ < oo if, and only if, f(x) is the restriction to [—1, 1] of an
entire function of index ¢, with p(g) = o.

However, the result corresponding to (7) does not always hold for the lower
g-order. In fact, Reddy ([7], Theorems 2A and 2B) has further shown that if
f(x) is the restriction to [— 1, 1] of an entire function of index g, then its lower
g-order X(g) satisfies

™

[2—1]
lim inf n log n

mowo - log[1/E(f)]

and that the reverse inequality (and hence equality) holds in (8) if
E,_(f)/E.(f) is a nondecreasing function of n for n > n,. C)]

In the present paper, we obtain a result corresponding to (7) for the lower
g-order A(g) which holds without the condition (9). We also give one more
relation which depicts the influence of A(g) on the rate of decrease of E, (f).

< Ag) ®)

2. MAIN RESULT

We first prove

THEOREM 1. Let f(x) be a real-valued continuous function which is the
restriction to [—1, 1) of an entire function f(z) of index q (> 2). Then, f(z) is
of lower g-order Mq) if, and only if,
ny, loglt- my,_,

log[1/E,,(f)] °

where maximum is taken over all increasing sequences {n,} of natural numbers.

(10)

Mg) = max lmhL inf

We require a few lemmas.
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LeMMA 1. Let f(z) = Y., @,z" be an entire function of index q (> 2) and
lower g-order X(q) and let v(r) denote the rank of the maximum term u(r) for
lz| =r, ie, pr) = max,so{| a, | r*} and v(r) = max{n | pu@r) = | a, | r"}.
Then

log"™ M v(r) _ jim jnr 108 ) an

A(q) == llr'g)énf Iog r r->o0 Iog r

The lemma follows easily on the same lines as those of Whittaker
([10}, Theorem 1) for g = 2, so we omit the proof.

LEmMMA 2. Let f(z) = ¥,_o Gn2™ be an entire function of index q (> 2) and
lower g-order X(q) and let {n,} denote the range of the step function v(r), then

logle !

log p(x.+1) 12

AMg) = lirlﬁ cionf

where the p(n,) terms denote the jump points of v(r).
Proof. 1t follows, from given data, that

wr)=m when plng) < r < pnxy)
and that
plne) < plne + 1) = - = p(ip).

Furthermore, if n, < n < ng,;, then p(n) = p(ny,,) and so (11) gives

[g—-1] [g-1]
logle-1 n > lim inf logl?-1(m, + 1)
log p(n) koo log p(ry11)

o logltt(n, 4+ 1)
= MR o T 1)

Mg) = lir'g i)nf

= Ng),

which gives (12).
Remark. Forg = 2, relation (12)is due to Gray and Shah ([3], Lemma 1).
LEMMA 3. Let f(z) = Yo @x2™ be an entire function of index q (> 2) and

lower g-order A(q) such that (k) == | ay/ay., Y/ ™+ forms an increasing
Junction of k for k > k, ; then

(i1 — 1) logle my,
log | ax/ar4 | ) (13)

Ag) = lixl}l uionf

Proof. For q = 2, this result is due to Juneja and Kapoor [5]. We note
that since (k) forms an increasing function of k for k > k,, we have

w(r) = ny for J(k — 1) < r < k),
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so that, for sufficiently large &, p(n,) = Yk — 1), p(rpyy) = (k). Substi-
tuting the value of p(n;) in (12) we get (13).

LEMMA 4. Let {n,} be an increasing sequence of positive integers and let
{a.} be a sequence of complex numbers such that | a, | <1 for k > k; then
forg =2,

. . o nyloglelp, .. o, — ny_y) logle-ti g,
lim mfig——% > lim 1nf( M) log k1
ke log | ay, | koo log | ay,_,/a,, |

(14)

The lemma follows exactly along the same lines as those of Juneja
([4], Lemma 2) for ¢ = 2, so we omit the proof.

Proof of Theorem 1. First, suppose that f(x) has an analytic extension f(z)
which is an entire function of index ¢ and lower g-order A(g). Following
Bernstein’s original proof ([6], p. 76) it follows that for each n > 0

2B(r)

forany r >1 (15)
where B(r) = max.c¢, | f(z)|, and %, with r > 1 denotes the closed interior
of the ellipse with foci 41, with half-major axis (r? 4 1)/2r and half-minor
axis (r® — 1)/2r. The closed disks D,(r) and D,(r) bound the ellipse €, in the
sense that

r241
2r

Dy(r) =

e|1z1 < S ce cpy = [z 121 <

From this inclusion, it follows that

rg—1
2r

(P50 <o < (5

5 forall r>1. (16)

Consequently, (15) and (16) give for any sequence {»,} of positive integers that

r24+1
r

M(I5=) > E,()r™  foranyr>3andh=1,2... (1)

Now, let

.. o nyloglellp, |
liminf —-—=2——*=2
s T1og(1/En(f))

Since f(z) is an entire function, (2) gives 0 < a <C co. First, let 0 << o << 005
then for o« > € > 0,

= o({m) = o

E,(f) > [logle-2 m, ] ™9 for h > hy = hofe).
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Let r, = e(logle2n, Wi forh=1,23,....r <r <ru,h>h,
then (17) gives

2
logM(r 2-+r_ ! ) = log E,,(f) + nylogr

= log E, (f) -+ ny logr,

=

o€

= exple-2] ( ’:’1 )

So,

2
logll M (£ +1 > (o — ) log rpyy — (¢ — €)
2r

Z(ax—éelogr—(x—e)
or

_ logtal M(r)
)\(q) llm lnfT =

which obviously holds when « = 0. Since this inequality holds for every
increasing sequence {n,} of positive integers, we have

Ag) = max a({ny}) = B, for instance. (18)

Now, for each n > 0, there exists a unique p,(x) € 7, such that

”f"_Pn ”L°°[—-1,1] = En(f)s n=012,...

Further, since || ppyy — Py llzx[-1.17 is bounded above by 2E,(f), we have by
[6], p. 42:

| Pnsa(z) — pu(@)! < 2E,(f) rt for all ze %, for any r > 1. (19)

Thus, we can write
F&) = P + T, (prn@ — o),

and this series converges uniformly in any bounded domain of the complex
plane. So, (19) gives

| f@) < |po(2)| + 2 i E(f)r**'  forany ze%,
k=0

640[11/4~5
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and consequently, from the definition of B(r)
B(r) < Ay + 2 Z Ei(f) re+,

So, (16) pives

2 )
M(E) < 4ot 2 3 B 20)

Obviously, the function g(z) = Y14 Ex(f) z*+! is an eatire function. Let
{n,} denate the range of »(r) for this function. Coasider the function
Wz) = To o Ea(f) 2 Tt is easily seen that h(z) is also an entire function
and that g(z) and k() have the same maximum term for every z. It follows,
from Lemma 1, that both have the same lower g-order. If we denote this by
Ax(g), then since A(z) satisfies the hypotheses of Lemma 3, we have

_ (1, — M) logl™d n,_,
M) = T it e F  VET)

n, bogUn,

— "= 4
111,.;11 30“f 1og0/E ) by Leapma
m, logl*n, | _
< < max lu}g inf ToeE) B. (21)

Thus (20) and (21) give

M) < 4+ 20

< 0(1) + 2 exple-B)(r®*) for a sequence ry , Fa ... > 0.

Hence, it follows that
Mg) <8, (22)

which shows that the tower g-order of f(2) does not exceed 8. Thus, if f{z) s
of lower g-order Mg), then (18) shows that 8 < A(g). If B < A(g), then the
above arguments show that f(z) would be of lower k-order less than S,
a contradiction. Thus, we must have B = A(g). This completes the proof of
the theorem.

Using Lemmas 3 and 4 and arguing as above the following theorem can also
be proved <asily.
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THEOREM 2. Let f(x) be a real-valued continuous function which is the

restriction to [—1, 1] of an entire function f(z) of index q. Then, f(z) is of lower
g-order X(q) if, and only if,

n — 1) logla m,_,

108(En, (D En(f) 23)

. P
ANg) = n{anz:}x 111‘}2) Inf

where maximum is taken over all increasing sequences {n,} of natural numbers.

10.
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