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1. INTRODUCTION

Let f(x) be a real-valued continuous function defined on [~l, 1], and let

0)n = 0, J, 2,...,EnU) == inf III - p llt""'-llj ,
P E 1T

fJ
l •

be the minimum error in the Chebyshev approximation of f(x) over the set 1T"

of real polynomials of degree at most n. Bernstein ([1], p. 118) proved that

lim E~/n(f) = 0 (2)
n->OO

if, and only if, f(x) is the restriction to [-1, 1] of an entire function.
Let fez) be an entire function, and let

(3)

M(r) = MJCr) = max If(z)\;
1<I=r

then the order p and lower order Aof fez) are defined by ([2], p. 8)

ll'm sup log log M(r) = p (0 \ <')
'f ,~I\~P_"'OO.r->OO In log r It

Now, for fez) entire, (2) does not give any clue as to the rate at which
E~!n(f) tends to zero. Recently, Varga ([91, Theorem 1) has shown that this
rate depends on the order of fez). In fact, he has proved that

. n log n
h~->~Up log[ljEn(f)] = p, (4)

where p is a nonnegative real number if, and only if, f(x) is the restriction to
[-1, 1] of an entire function of order p.

However, jf f{z) is an entire function of infinite order, then (4) fails to give
satisfactory information about the rate of decrease of E;("(f). Reddy
([7], Theorem 1), making use of the concept of "index" of an entire function
earlier introduced by Sato ([8], p. 412) extended the above result to functions
of infinite order. Thus, if

log[qj M(r)
p(q) = lim sup q ?: 2 (5)r->OO log r '
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where 10g[0] M(r) = M(r) and log[q] M(r) = log(log[q-l] M(r», then fez) is
said to be of index q if p(q - 1) = 00 while p(q) < 00. If fez) is of index q
we shall call p(q) the q-order of fez). Analogous to lower order, the concept of
lower q-order can be introduced. Thus fez), an entire function of index q, is
said to be of lower q-order A(q) if

'( ) _ I' . f log[q] M(r)
I\q-Imm I '

r->cD og r q ): 2. (6)

Reddy ([7], Theorem I) has extended (4) to functions of infinite order by
showing that

. n log[q-l] n
11l1J->~p 10g[IIEn(f)] = u (7)

satisfies 0 < u < 00 if, and only if, f(x) is the restriction to [-1, I] of an
entire function of index q, with p(q) = u.

However, the result corresponding to (7) does not always hold for the lower
q-order. In fact, Reddy ([7], Theorems 2A and 2B) has further shown that if
f(x) is the restriction to [-I, 1] of an entire function of index q, then its lower
q-order A(q) satisfies

n log[q-l] n
li~->~nf 10g[IIEn(f)] ~ A(q) (8)

and that the reverse inequality (and hence equality) holds in (8) if
En-1(f)IEn(f) is a nondecreasing function of n for n > no. (9)

In the present paper, we obtain a result corresponding to (7) for the lower
q-order A(q) which holds without the condition (9). We also give one more
relation which depicts the influence of A(q) on the rate of decrease of En(f).

2. MAIN RESULT

We first prove

THEOREM 1. Let f(x) be a real-valued continuous function which is the
restriction to [-I, I] ofan entirefunction fez) of index q (): 2). Then, fez) is
of lower q-order A(q) if, and only if,

. . n" log[q-l] n"-l
A(q) = max hm lnf I [liE (f)] , (10)

{"h} h->cD og nh

where maximum is taken over all increasing sequences {n,,} ofnatural numbers.

We require a few lemmas.
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LEMMA 1. Let f(z) = 2::=0 anzn be an entire function ofindex q (;::>- 2) and
lower q-order >..(q) and let vCr) denote the rank of the maximum term ft(r)for
I z I = r, i.e., ft(r) = maxn>o {I an I rn} and vCr) = max{n I ft(r) = Ian I rn}.
Then

\() I' . f log[q-lj vCr) l' . f log[qj ft(r)/\ q = 1m In = 1m In ---"=:---'--'--"-
r~OO log r r~OO log r (11)

The lemma follows easily on the same lines as those of Whittaker
([10], Theorem 1) for q = 2, so we omit the proof.

LEMMA 2. Let fez) = 2::=0 anzn be an entire function ofindex q (~ 2) and
lower q-order >..(q) and let {nk} denote the range of the step function vCr), then

. . log[q-lj nk
>"(q) = hm mf I ( )

k~oo og p nk+1

where the p(nk) terms denote the jump points of v(r).

Proof It follows, from given data, that

(12)

and that
vCr) = nk when

(13)

Furthermore, if nk < n ~ nk+1 , then p(n) = p(nk+1) and so (11) gives

\() I' . f log[q-lj n I' . f log[q-lj(nk + 1)
/\ q = 1m m ,;::::- 1m In ---":;.-----';-~~"-

n~oo log p(n) k~oo log p(nk+1)

I
· . f log[q-lj(nk + 1)

= 1m m I ) ~ >..(q),k-->oo og p(nk + 1

which gives (12).

Remark. For q = 2, relation (12) is due to Gray and Shah ([3], Lemma 1).

LEMMA 3. Let f(z) = 2:;=0 a~nk be an entire function ofindex q (~ 2) and
lower q-order >..(q) such that if;(k) --'- I ak/ak+1 11/(nk+l-nk ) forms an increasing
function of k for k > ko ; then

\() I' . f (nk+1 - nk ) log[q-l] nk/\q=lmm .
k-+oo log I ak/ak+1 I

Proof For q = 2, this result is due to Juneja and Kapoor [5]. We note
that since if;(k) forms an increasing function of k for k > ko , we have

vCr) = nk for if;(k - 1) ~ r < if;(k),
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(14)

so that, for sufficiently large k, p(nk) = f(k - 1), p(nk+1) = f(k). Substi­
tuting the value of p(nk +1) in (12) we get (13).

LEMMA 4. Let {nk} be an increasing sequence ofpositive integers and let
{an} be a sequence of complex numbers such that Ian I < 1for k > k o ; then

k

for q ~ 2,

I
, 'f nk log[q-l] nk- 1 '-. I' . f (nk - nk-l) log[q-l] nk-11m In ::? 1m In --'---'''--;--''';--'''-'-:::;----;--=----'''-
k->w log I ank I 1 k->w log I a"'k_Jank I

The lemma follows exactly along the same lines as those of Juneja
([4], Lemma 2) for q = 2, so we omit the proof.

ProofofTheorem 1. First, suppose that f(x) has an analytic extension f(z)
which is an entire function of index q and lower q-order A(q). Following
Bernstein's original proof ([6], p. 76) it follows that for each n ~ °

E (f) ~ 2B(r)
n "" rn(r - 1)

for any r > 1 (15)

where B(r) = maxZ€~ I f(z)l, and ~r with r > 1 denotes the closed interior
of the ellipse with foci ±I, with half-major axis (r 2 + 1)/2r and half-minor
axis (r 2 - I)/2r. The closed disks Dk) and Dlr) bound the ellipse ~r in the
sense that

D1(r) - !z II z I ~ r
2

;,:- 1 !c ~r C Dlr) == !z II z I ~ r
2

~ 1 !.
From this inclusion, it follows that

M ( r
2

;,:- 1 ) ~ B(r) ~ M ( r
2

~ 1 ) for all r > 1. (16)

Consequently, (15) and (16) give for any sequence {nh} of positive integers that

for any r > 3 and h = 1,2,... . (17)

Now, let

Since f(z) is an entire function, (2) gives 0 ~ ex ~ 00. First, let 0 < ex < 00;

then for ex > € > 0,

for h > ho = ho(€).
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Let rh = e(log[q-2] nh_I)I/(lX-<l for h = 1,2,3,... . If rh < r < rh+l , h > ho ,
then (17) gives

log M ( r
2
~ I ) ? log Enh{f) + nh log r

? log Enh{f) + nil, log 'II,
> nil,

= exp[q-2] ( 'he+! f-·.
So,

log[q] M ( r
2
~ I ) > (ex - E) log 'h+1 - (ex - E)

? (ex - E) log, - (ex - E)

or

log[qj M(r)
A(q) = lim inf ? ex

r->OO log,

which obviously holds when ex = O. Since this inequality holds for every
increasing sequence {nh} of positive integers, we have

.\(q) ;;::, max ex({nhD = f3, for instance.
{nh}

Now, for each n ? 0, there exists a unique Pn(x) E 7Tn such that

(18)

Ilf - Pn IILCXl[_I,lj = En{f), n = 0,1,2,... ,

Further, since II Pn+l - Pn IILCXl[-l.lj is bounded above by 2En{f), we have by
[6], p. 42:

IPn+l(z) - Pn(z)1 ~ 2En{f) ,n+l for all z E ~r for any, > 1. (19)

Thus, we can write

00

f(z) = Po(z) + L (pk+lz) - piz)),
k~O

and this series converges uniformly in any bounded domain of the complex
plane. So, (19) gives

00

If(z)1 ~ IpO<Z)1 + 2 L Ek{f) rk+1
k=O

for any z E ~r
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and consequev.tIy, from the definitiDn of B(r)

00

B(r) ~ Aq + "2 I Eif) rk+1.
k=O

So, (H7) gives

(20)

Obviously, the function g(z) = r:'a Eif) Zk+l is an entire function. Let
{nk } den<Jt~ the ra.nge of v(r) f<Jr this function. C<lOsider the functi<JD
h(z) = L,:~'J El1.(J} Z"k. 11; i3 eastly seen tha.t h(z) is also an entire function
and that g(o:) and h(z) have the same ma~imum term fDr every z. It follows,
from Lemma 1, that both have the same lower q-order. If we denote this by
Ao(q), then since h(z) satisfies the hypotheses of Lemma 3, we have

. . n" log[q-lj nh-l
~ max hm mf -1 (lIE (f) = {3.

{ nh} h->oo 0 g nh

Thus (20) ami (21) give

(21)

< 0(1) + 2 exp[q-l)(ri'+<) for a sequence (1' r2 , ... ---* 00.

Hence, it folloWS that

A(q) ~ {3, (22)

which shows that the lower q-ordn of f(z) does not e1'.ceed tl Thus, if fl,) 15
of lower q-Drder >t(q), then (l8) ShDW~ that {3 ~ A(q). If P < .\(q), then the
above arguments show that fez) wCluld be of lower k-Dfder less than {3,
a contradiction. Thus, we must have {3 = A(q). This completes the proof of
the theorem.

Using LemIIlas 3 and 4 and arguing as above the following theorem can also
be proved ~a:;ily
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THEOREM 2. Let f(x) be a real-valued continuous function which is the
restriction to [-1,1] ofan entirefunction fez) ofindex q. Then, fez) is oflower
q-order A(q) if, and only if,

(23)

where maximum is taken over all increasing sequences {nh} ofnatural numbers.
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